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A~traet--ln the present investigation a theoretical analysis is performed to study the unsteady mixed 
convection flow and heat transfer between two infinite coaxial isothermal disks. One disk rotated at a 
constant rate and another one at a time-dependent rate. Two modes of the time-dependent rotation, 
asymptotic and torsionally oscillatory, are studied. Governing equations are formulated with respect to a 
rotating frame of reference. The density variation in the centrifugal force term is considered to explore the 
rotation-induced buoyancy effect. By using proper transformations, a simple model of spatial similarity 
for a Bous:sinesq fluid is developed and then solved by a finite-difference method. Effects of rotation, 
centrifugal buoyancy, unsteadiness, oscillation amplitude and frequency on the flow and heat transfer 

characteristics are discussed. 

INTRODUCTION 

Fluid flow and heat transfer associated with a rotating 
disk system are of' academic and practical interest for 
the wide applications of rotating machinery. Due to 
the rotation of the disk two rotational forces, Coriolis 
and centrifugal, are present in the flow field. By con- 
sidering the fluid density variation and invoking the 
Boussinesq approximation, the so-called centrifugal 
buoyancy can be taken into account. The buoyancy 
effects on steady transport phenomena in rotating disk 
systems have been extensively studied by Soong and 
his colleagues [1--3]. In a rotating thermal system, 
the heat transfer performance may be enhanced or 
reduced by the transient effects. In the worst cases of 
heat transfer degradation, damage may result by the 
periodic and/or excessive thermal loading as well as 
the emergence of the local hot spot. To explore the 
unsteady flow characteristics, in the past, the transient 
analyses associated with rotating disk systems have 
been studied by a number of investigators. The related 
flow configurations can be roughly divided into the 
following three categories : (1) single disk [4-14] ; (2) 
coaxial disks [15, 16] and (3) cylindrical container 
[17-21]. Additionally, unsteady film flow on a rotating 
disk, e.g. that in refs. [22, 23], is another kind of 
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rotating-disk flow configuration. The central theme of 
the latter class of studies lies in the interfacial effects 
and is quite different from that of the problems in the 
aforementioned three categories. 

A chronological list of the previous theoretical/ 
numerical works on unsteady rotating flows associ- 
ated with the single disk, coaxial disks, and cylindrical 
container is shown in Table 1. Some characteristic 
features of the unsteady rotating-disk flows have been 
disclosed in the former literature. For example, in an 
impulsively started rotating-disk system, the time for 
development of the steady state and Ekman layer is 
of the order of Re 1/2 [19]. In Sharma's analysis for a 
single fluctuating disk [14], it has been revealed that 
the responses of the heat transfer rate and the radial 
friction present phase lag, while the tangential friction 
is phase leading. Later on, Singh's results [14] 
corroborated Sharma's conclusion; also, he found 
small effects of frequency on heat transfer rates. From 
the aforementioned literature survey, most of the 
studies focused their attention on hydrodynamic 
natures, and only a few studies [8, 12, 14] have dealt 
with forced convection heat transfer on a single disk. 
Moreover, it is noted that only two studies pertain to 
the unsteady flow in the coaxial disk system. Up to 
date, strictly speaking, a study on the unsteady non- 
isothermal flow and heat transfer characteristics 
between two rotating disks has not yet been reported. 

The objective of the present work is to study the 
effects of the transient rotation and the centrifugal 
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NOMENCLATURE 

B buoyancy parameter or thermal 
Rossby number, flATc 

Cf skin friction coefficient, 
2#(dU/8Z)w/[p(Rf~,) 2] 

cp constant-pressure specific heat 
F radial velocity function, U/Rf~ 
G tangential velocity function, V/Rf~j 
H axial velocity function, W/(v~ )  ~/2 
h heat transfer coefficient 
k thermal conductivity 
Nu Nusselt number, hS/k 
P static pressure 
P ' ,  p '  dimensionless and dimensional 

pressure departure, P '  = p'/p(S~O 2 
Pr Prandtl number, v/ct 
R, ~0, Z cylindrical coordinates 
Re* local rotational Reynolds number, 

(Rn,)S/v 
Re rotational Reynolds number, 9t~S2/v 
S spacing between two coaxial disks 
T temperature 
t time 
A To characteristic temperature difference, 

T2-  T, 
U, V, W velocity components  in R-~o-Z 

coordinate system. 

Greek symbols 
ct thermal diffusivity, k/pcp 
fl thermal expansion coefficient, 

- (1/Pr) (tgp/O T)r 
7 dimensionless disk-velocity difference, 

r/ dimensionless axial coordinate, Z/S  
0 dimensionless temperature difference, 

( T -  TI)/ATc 
# dynamic viscosity 
v kinematic viscosity, p/p 
FI dimensionless pressure, P'/pr(Sf~l) 2 
p density 
z dimensionless time, f~j t 
f2 rotational speed (rsd s-~ or rpm) 
o~, f~os dimensionless and dimensional 

forcing frequency, ~o = f~os/fl~. 

Subscripts 
0 initial state 
1 first disk 
2 second disk 
oo asymptotic state as t ~ oo 
r reference or radial 
t tangential 
f~ rotation. 

buoyancy on flow and heat transfer between two 
coaxially rotating infinite isothermal disks. One of  the 
disks rotates at a constant rate and another one at a 
time-dependent rotating rate. The density variation in 

the centrifugal force term is considered so as to 
account for the centrifugal-buoyancy effects. The 
governing equations for the Boussinesq fluid with 
respect to a rotating frame of  reference are trans- 

Table 1. Previous theoretical/numerical studies on unsteady rotating disk flow and heat transfer problems 

Rotating Heat Unsteady 
Author Year system Solution convection mode 

Rosenbalt 1959 Single disk Asymptotic - -  Oscillatory 
Rosenbalt 1960 Coaxial disks Asymptotic - -  Oscillatory 
Greenspan 1 9 6 3  Cylindrical container Asymptotic - -  Impulsive 

and Howard 
Benney 1963 Single disk Asymptotic - -  Oscillatory 

Wedemeyer 1 9 6 4  Cylindrical container Integral - -  Impulsive 
Riley 1965 Single disk Asymptotic - -  Oscillatory 

Pearson 1965 Coaxial disks Finite difference - -  Impulsive 
Benton 1966 Single disk Series - -  Impulsive 
Riley 1967 Single disk Asymptotic Forced Impulsive 

Oscillatory 
Pao 1 9 7 0  Cylindrical container Finite difference - -  Impulsive 

Lugt and Haussling 1 9 7 3  Cylindrical container Finite difference - -  Impulsive 
Bodonyi and 1977 Single disk Finite difference - -  Impulsive 
Stewartson 

Purushothaman 1978 Single disk Asymptotic - -  Oscillatory 
Shippers 1978 Single disk Finite difference - -  Impulsive 

Asymptotic Oscillatory 
Sharma 1979 Single disk Asymptotic Forced Oscillatory 

Bertela and Gori 1 9 8 2  Cylindrical container Finite difference - -  Impulsive 
Stewartson et al. 1982 Single disk Asymptotic - -  Impulsive 

Singh et aL 1989 Single disk Finite difference Forced Oscillatory 
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formed to a spatial similarity form. A number of  pre- 
vious investigations, see Table 1, used asymptotic 
expansion in their analyses ; however, the results were 
restricted to the extreme cases of low- and high- 
frequency flows. In the present work, a finite difference 
method is used for solution of the unsteady spatial- 
similarity equations. Although, as disclosed in a recent 
review article by Mochizuki [24], the rotating disk 
flows are complex because of flow turbulence and 
rotating stall phenomenon for high rotation rate and 
large radius, the similarity analysis is still useful for 
exploration of the laminar and stall-free part of the 
flow field. For  example, in the comparisons made by 
Pearson [16] and Itoh et  al. [25], similarity solutions 
seem in reasonable agreement with the finite-disk data 
in the region o f  R / S  <<. 0.6. This lends supports for the 
usefulness of the similarity models. The same class of 
models has been ernployed to study various unsteady 
flows, e.g. rotating-disk flow (without heat transfer) 
[16] and the film flow on a rotating disk [23]. More- 
over, since the measurements of the field properties, 
e.g. velocities and temperature, on the two-disk flow 
configurations are quite difficult, especially for the 
temperature distributions in the torsionally oscillating 
flow considered, a relatively simple theoretical model 
can provide some useful qualitative and/or quanti- 
tative results, and play a complementary role in under- 
standing hydrodynamic and heat transfer charac- 
teristics of this class of complex flows. In the present 
work, two modes of unsteady rotation, asymptotic 
and torsionally oscillatory, are considered. The influ- 
ences of the rotation, centrifugal buoyancy and 
unsteadiness, including the effects of frequency and 
amplitude, on the flow and heat transfer charac- 
teristics are discussed. 

ANALYSIS 

As shown in Fig. 1, two rotating coaxial infinite 
disks considered in the present study are placed in 
parallel and separated by a spacing S. The disks lie at 
constant wall temperatures T~ and T2, and rotate at 
rotational speeds f~ and ~2, respectively. The 
rotational rate f~l i:~ constant and that of disk 2 is time 
dependent, i.e. f12 = ~2(t). The cylindrical coordinate 
system is fixed on the center of the disk 1 and rotates 
with it. Assume that the flow is laminar, axisymmetric, 

and of constant physical properties. By invoking the 
Boussinesq approximation to allow for density vari- 
ation in centrifugal force term, the governing equa- 
tions can be written in a similar form as appeared in 
a previous steady work [26] : 

V ' V = 0  (1) 

OVtat  + (V. V)V = vV2V + VP'/pr 

-- f l ( T -  T~)(~q x f* x R)--  2f~ x V (2) 

a T/a t  + (V. V) T = ctV 2 T (3) 

where the subscript r denotes a reference condition at 
which V - 0, P '  = P - P r  is the pressure departure 
from the reference condition, and R is the position 
vector. By using the transformations and the dimen- 
sionless parameters : 

q = Z / S ,  z = f~lt ,  F =  U/RfI~ ,  G = V /R f ] I ,  

H =  W / ( v ~ , )  '/2, 0 = ( T - T ~ ) / A T c ,  R e  = S 2 ~ , / v ,  

Pr  = v/oe, B = f lAT¢,AT¢ = T 2 -  T~ 

the governing equations can be written as 

G~ = R e  ' G , , - R e - ~ / 2 ( H G , - H . G - H . )  (4) 

H~,, = R e  - 1 H , , ~  - 4 Re  1/2 (G + 1) G, 

- R e - I / 2 H H . m + 2 B R e l / 2 0 . 1  (5) 

Of = (Pr R e ) - I O , ,  - -  R e -  J/2HO~ (6) 

with the boundary and initial conditions for H(T, q), 
G(z, H) and 0(z, q) given as follows : 

H(z, 0) = H'(z,0)  = H(z, l) = H'(z, 1) = 0 

a(z,0)  --- a(z,  l )--y(z)  = 0 

H(0, q) = g0(~/), G(0, , )  = Go(q), 0(0, q) = 00(q) 

(7) 

where G(~, q), H(z, q) and O(z, q) are the tangential 
velocity, axial velocity and temperature function, 
respectively. Note that the radial velocity F(z, ~/) has 
been expressed in terms of the derivative H,(z ,  q). 

The parameter Pr  is the Prandtl number and 
Pr  = 0.7 for air is used in the present study. The 
rotational effect is characterized by the Reynolds 
number, Re,  which ranges from l0 to 1200. The buoy- 

S 

Z 

( 3 flz(t) T 2 

CD ~1 T1 

Fig. 1. Physical model of rotating coaxial disks. 

R 
~ t  
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Table 2. Grid-dependence of the friction factors and Nusselt numbers for (Re, B, 7o, ~ ,  a, 
AT) = (100, 0.2, -- 1, 0, 0.8, 2.5 x 10 -4) 

No. of grids 51 101 201 

Cf, l Re* - 3.10502 (0.773%) -- 3.09026 -- 3.09026 
Cfa Re* +0.238285 (0.928%) +0.238473 +0.238473 
Cftt Re* -- 11.2301 (0.458%) -- 11.2714 11.2714 
Cft 2 Re* - 3.86619 (3.000%) - 3.94722 - 3.94722 

Nu~ + 10.3034 (0.595%) + 10.3675 + 10.3675 
Nu, +2.25832 (0.010%) +2.27522 +2.27522 

ancy paramete r  B is also referred to as the thermal  
Rossby number.  For  validity of  the Boussinesq approxi- 
mat ion ,  in convent ional  free-convection problems,  the 
values of  B = flATc were usually small. Fo r  example, 
a magni tude  of  flATc <<. 0.1 was claimed in the study 
of  Gray  and  Giorgini  [27] ; and  a value of  0.2 was also 
used [28]. In the present  work,  the thermal  Rossby 
n u m b e r  B is restricted in the range of  [BJ ~< 0.2, and  
7(z) = [ f ]2 (z ) -Q , ] /~ j  is the dimensionless  rota t ion-  
rate difference between the two disks. The values of  
7 = 0, - 1  and  - 2 ,  respectively, cor respond to the 
cases of  ~'~2 = ~-~1 (co-rotat ing disks), f~j ~ ~2 = 0 
( rotor-s ta tor)  and  ~2 = - ~ (counter- rota t ing disks). 
The radial  velocity F(T, r/) can be evaluated by con- 

t inuity once H(T, r/) has  been solved. The funct ions 
Ho(r/), G0(r/) and  00(r/) s tand for the steady-state solu- 
t ions cor responding  to the initial ro ta t iona l  condi t ion  
70 = 7(0). In the present  study bo th  the asymptot ical ly 
varying ro ta t ion  rate 7(z) 

7 ( T ) = 7 0 + ( 7 ~ - - 7 0 ) ( 1 - - o ' * )  0 < ~ r <  1 (8) 

and  the torsionally oscillatory mode  

7(z) = V0 + ( sin (~oz) (9) 

are considered. In equa t ion  (8), 70° = 7(oo) denotes  
the asymptot ic  state as z -~ ~ ; the pa ramete r  a is one 
governing the rate of  change of  V, ( in equa t ion  (9) 
s tands for the oscillation ampli tude,  and  ~o = Qos/O, 
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Fig. 2. Spin-up solutions for (Re, B, 70, 7®, tr) = (100, 0.1, -- 1, - 2 ,  0.845). 
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Fig. 3. Friction factors and heat transfer rates for (B, 7o, 7~, a) = (0.1, --1, -2,  0.845). (a) Re = 100, 
(b) Re = 10. 

and f~os are the dimensionless and dimensional 
frequency of the disk oscillation. 

The flow and heat transfer parameters concerned in 
the present study are tangential and radial skin friction 
and heat transfer rate. These boundary parameters on 
each disk and the two-disk summations are defined as 
follows. 

(a) Tangential skin friction factors : 

Cal Re* = 2G.(z, 0) C f t  2 Re* = --2G.(z,  1) 

Ca Re* = Cf:] Re* + Cft2 Re* (10) 

(b) Radial skin friction factors : 

Crr, Re* = 2F,(~,0) Cfr2Re* "= --2F,,(z, 1) 

Cf~ Re* = Cfrl Re* + Crr2 Re* (11) 

(c) Nusselt numbers : 

Nu] = --O,~('r,,O) Nu2 = 0,(z, 1) 

Nu = Nul + Nu2. (12) 

By these definitions, the positive yalues of the 
Nusselt number stand for the heat transferred from 
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- -  Unsteady 
- - -  Quasi-steady (a) 

0 ~---~-.-~- 

_ 0  

- 1 0  ~ / c f t R e *  

-15  I ~ . ~  , [ ,  , i ' ' t  i i i ~ i t, , 14 / * 

t-/, ', 

- 2  ~,//" 

1 

0 

- 1  

- 2  

- 3  

- 4  

i . . . i  i . 1. i i i F ~ 

Nu 2 

i / /"  Nu 1 
/ /  ~ . . . . . . . .  

1 /  / / J  / /  

-G 

.10 

1C 

(b) 

i~ ~\\. cft2 Re* 

{3 ~ c f t  1Re, 
-G 

• I0 /~ CftRe 

.15 
14 

i * 

6 

\ \ \ \ \ \  x ~  * 

2 \ "-~ CfrlRe 

fx2 lle 

~ 4 )  r , i , r , 

X 

0 ~ Nu 

-1  / / / f ~  . . . . . . . . .  NUl 

- g  / / ! / /  

" ~  . . . .  . .. . . . .  

0 10 20 80 40 

Nu 2 

, , ,, , , , 

o to 20 , b  50 50 

T "7" 

Fig. 4. Buoyancy effects on friction factors and heat transfer rates for (Re,)'0, 7~, tr) = (100, - 1, 0, 0.8). 
(a) B = 0.0 and (b) B = 0.2. 

the wall to fluid, and the negative Nu for heat transfer 
from wall to fluid in the case of T 2 -  T]. The situation 
is reversed for T~ > T2. 

NUMERICAL PROCEDURE 

The numerical computat ion is carried out on a non-  
uniform algebraic grid. Time-wise discretization is 
carried out by using a weighted scheme [29], while the 
spatial discretization is performed by a three-point 
exponential-based scheme, which was originally 
developed by Barrett [30] and recently extended to a 
nonuniform-discretization form by Soong [31]. 

Numerical experiments on the grid-dependence test 
were performed. A typical case of a rotor-stator sys- 
tem (7 = - 1) at Re = 100, B = 0.2 and Pr = 0.7 was 
considered as an illustrative example. Disk 2 was 
initially stationary and impulsively started at z = 0, 
and then approached D2 = f~,. In this situation, ~,(z) 
varied from Y0 = - 1 to 7o = 0 with a = 0.8. A uni- 
form time step, Az = 2.5 x 10 -4, is used in the test. 
Table 2 lists the results at ~ = 5.0 (20 000th time step) 
on grids of 51, 101,201 points in r/-space. Solutions 
on the 101-grid show no significant deviation from the 
201-grid results. The deviations of the 51-grid solu- 
tions from the 201-grid ones are shown in the par- 
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entheses. It is obvious that, in this case, the 101-grid is 
sufficient for accuracy. For  high-Re cases (Re >1 500) 
a finer grid, e.g. 201-point, has to be used for better 
resolution and convergence characteristics. The effect 
of  the time step was also studied: for tr = 0.8 and 
0.845 considered in the present work, the results 
revealed that Az of  order 10 -4 is appropriate in the 
computation.  However,  for the smaller tr in the 
asymptotic mode, i.e. rapid time rate of  change in 7, 
a smaller time step should be employed. 

RESULTS AND DISCUSSION 

Asymptotic mode 
Transient effects and formation of  Ekman layer. 

Figure 2 shows the results for the case of  Re = 100, 
B = 0.1. Disk 2 is initially stationary, ~2 = 0, and then - 5  
suddenly spins up in the opposite direction to disk 
1, and then approaches to f~2 = - t )~  asymptotically. - 7  
Therefore, the vahte of  7 changes from ~0 = - 1  to 
7~ = - 2  following the rule of  equation (8) with 
tr = 0.845. In Fig. 2(a), the evolution of  radial velocity * - 9  
demonstrates the lbrmation of  the Ekman layer at 
r / =  1.0 due to spin up of  disk 2. All the velocity rO "~ 

- 1 1  
components  in Fig:~. 2(b)-(d) evolve fast at the tran- 
sient stage, z < 25: beyond that value the system 
approaches a steady state asymptotically. The differ- - 1 3  
ences between the velocity solutions at z = 25.26 and 
77.00 are insignificant. However,  the temperature field 
is not  so sensitive to the disturbance. Even at -~'~[ 

= 50.25, 0 still does not  reach its steady state. The 
responses of  friction factors and Nusselt numbers in 
Fig. 3(a) can also demonstrate this phenomenon.  At 10 

= 77.00, the solutions, including flow and tem- 
perature fields, coincide (almost) with the steady state , 
of  Re = 100, B = C,. 1 and 7 = - 2 .  ~ 8 

Reynolds number effects. Figures 3(a) and (b), 
respectively, present the skin friction and heat transfer 
rate for the cases of Re = 100 and Re = 10; and both 
cases are of  B = 0 . 1 ,  Y 0 = - l ,  7 ~ = - 2  and 6 
tr = 0.845. Like in an impulsively started system the 
responses of  the flow and temperature fields cannot 
follow the variatio~a in time. By comparing Figs. 3(a) _~  
and (b), it is noted that the transient effects, which 
are characterized by the deviations of  the unsteady 
solutions and the quasi-steady ones solved by con- 
sidering the temporal  value of  y(z) as a constant, are 
more remarkable for the higher Reynolds number, N u  
Re = 100. The larger transient effects in this situation 
can be attributed to the relatively stronger inertia in - 3  
rapidly rotating sy,,~tems. Comparison of  the unsteady 
solutions with the quasi-steady ones of  the heat trans- 
fer rates reveals that the transient effect diminishes at 
time about  z = 70 for Re = 100, while at about  z = 20 
for Re = 10. 

Buoyancy effects. For  the case of  Re = 100, disk 2 
is impulsively started at z = 0 and, then, the rotation 
rate f~2(z) approaches to f~t asymptotically with 
a = 0.8. Equivalently, 7(z) varies from 7o = - 1  to 
7~ = 0. In this situation, the time evolutions of  the 

radial friction factors and heat transfer rates with 
buoyancy parameter B = 0.0 and 0.2 are respectively 
shown in Figs. 4(a) and (b), wherein the unsteady 
solutions are compared with the quasi-steady solu- 
tions. In the comparison,  the buoyancy effects influ- 
ence the solutions only quantitatively, Since the final 
state is of  y = 0, i.e. two disks rotating at the same 
rate, the friction factors on the disks all settle down 
to the zero level for the solid-rotation case, i.e. 
Y = B = 0.0 in Fig. 4(a), and Nusselt numbers cor- 
respond to a conduction solution as expected. For  
B = 0.2 in Fig. 4(b), it is a free-convection flow driven 

- 4  
0 lO~r 20~r 30"n" 

~"r" 

Fig. 5. Transient development of flow and heat transfer par- 
ameters for (Re, B, Y0, (, e~) = (100, 0.1, - l, 0.1, 0.2~) 
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by the centrifugal buoyancy [2]. From the results in 
Figs. 4(a) and (b), the responses in the two cases 
are quite similar. It means that the development of 
the transient stage is not  significantly altered by the 
centrifugal buoyancy effect in the transient flows of 
asymptotic mode. 

Oscillatory mode 
Transient stage and fully developed oscillation. 

Figure 5 shows the flow and heat transfer parameters 
for the combinat ion of the governing parameters : (Re, 

B, 70, ~, eJ) = (100, 0.1, - 1 ,  0.l ,  0.21z). The system 
reaches a fully developed periodicity after 12 cycles, 
i.e. fox = 24n : before that the system lies at a transient 
stage with a variable mean. Herein the term 'fully- 
developed periodicity' means the system repeats itself 
cyclically. In Fig. 5, the fully-developed oscillation is 
of  a time-invariant mean, amplitude and frequency. 
By comparing with the quasi-steady results the vari- 
ations of the skin friction and heat transfer rate are 
alleviated in the presence of unsteadiness. 

Reynolds number effects. The Reynolds number  
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effects on the oscillatory behaviors are shown in 
Fig. 6, wherein the friction factors and Nusselt num- 
bers for Re = 10 and 100 under the conditions 
(B, ?0, ~, co) = (0.1, -- 1,0.1, n) are plotted. In the flow 
at Re = 10, as shown in Fig. 6(a), the transient stage 
sustains about three cycles, i.e. cot = 6x ; while for the 
relatively higher Reynolds number, i.e. Re = 100 in 
Fig. 6(b), a longer period is needed for the transient 
development. It is noticed that, due to the inertia, the 
temporal responses; in the unsteady flows generally 
deviate from their quasi-steady counterparts remark- 
ably. For the torsional oscillation of disk 2, the tan- 
gential friction of disk 2, C~2 Re*, can be augmented 
by the transient effect. In Fig. 6(b), the unsteady 
results of C~2 Re* for the relatively higher Reynolds 
number, Re = 100, are alleviated. Also, in Fig. 6(b), 
the responses reveal that the differences between the 
temporal responses and the corresponding quasi- 
steady flows are more pronounced in a high Reynolds 
number flow for the strong inertia. 

Figure 7(a) shows the cyclic evolution of the tan- 
gential velocity in an oscillatory period for a typical 
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Fig. 7. Cyclic evolution of tangential flow at (B, 70, ~, 
09) = (-0.1, -1 ,  0.1, n). (a) Re = 100, (b) Re = 10. 

case of (Re, B, 70, (, co) = (100, -0 .1 ,  - 1 ,  0.1, 70 in 
fully-developed oscillation regime, in which the 
response of the tangential velocity is the most salient 
one among three velocity components and the tem- 
perature field. The time-evolution of the tangential 
motion near the oscillatory disk can be observed 
clearly, while the temporal change in the region of 
r /< 0.7 is insignificant. For a relatively low Reynolds 
number, Re = 10 in Fig. 7(b), the penetration depth 
or influenced region of the disk oscillation can be 
extended due to the small inertia of the flow system. 

Buoyancy effects. For the case of (Re, ?o, ~, ~o)= 
(100 , -  1, 0.1, 0.2x), the total tangential and radial 
friction factors and Nusselt numbers with buoyancy 
parameters B = 0.2, 0 and - 0 . 2  are presented in Fig. 
8. By examining the transient development process, it 
can be found that the responses for B = 0.2 present a 
longer transient stage than the cases of B = 0 and 
-0 .2 .  

In the plots of tangential factors, Ca, Re* and 
Crt2 Re*, it is revealed that C~: Re* in this case stays 
very close to the quasi-steady solution, and the mag- 
nitudes of the amplitudes for B = --0.2 and 0.2 both 
do not change too much as compared with that for 
B = 0. The amplitude of Cm Re* for B = 0 is about 
20% of the quasi-steady solution. Comparatively, the 
amplitude of the Cft, Re* response is large for B = 0.2 
(>0)  and small for B = - 0 . 2  (<0).  In other words, 
centrifugal buoyancy with T2 > T, enhances the tran- 
sient effect and the buoyancy effect with T, > T 2 
[B = - 0 . 2  (<0)] reduces the transient effect. The 
same phenomena can also be observed in the plots of 
the boundary parameters Crrl Re*, Cf,2 Re* and Nu,. 
On the contrary, the influence of the buoyancy is 
reversed in the behavior of the heat transfer on disk 2, 
Nu2. The centrifugal buoyancy with positive B reduces 
the amplitude of the Nuz response, while that with 
negative B enhances it. The centrifugal-buoyancy 
effect also shifts the phase of the responses. For 
example, in the tangential friction factor, Cr,1 Re*, plot 
the response of B = 0.2 is phase-leading as compared 
with that ofB = 0 and B = --0.2. 

Oscillatory effects. Two effects of oscillation, i.e. 
amplitude and frequency, are addressed in the present 
section. Figure 9 shows the amplitude effect on the 
responses of the oscillating thermal-fluid charac- 
teristics for (Re, B, ?0, co)= (100, 0.2, - 1 ,  n). As 
expected the amplitude of the responses strongly 
depends on the fluctuation of disk rotation. The aug- 
mented amplitude of the responses can also result 
from increasing the amplitude of f~2(t). 

For the flows of (Re, B, ?0, ~) = (100, 0.2, - 1 ,  
-0 .1)  and the frequencies 09 = 0.2n, n, and 2~z in Fig. 
10, the frequency effects are explored by examining 
the time-evolution of the friction factors and heat 
transfer rates in a rotating disk system with the 
fluctuating disk 2. High-frequency fluctuation leads 
to a long transient stage before the fully-developed 
periodicity. Since the fluctuation of the tangential 
velocity of disk 2 is the source of the disturbance, 
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Fig. 8. Centrifugal-buoyancy effects on the flows at (Re, 7o, (, t~) = (100, - 1, 0.1, 0.270. 

Crt2 Re* presents a quite different behavior from the 
other flow and thermal parameters. It is seen that the 
amplitudes of  the Ca2 Re* responses can be augmented 
with increasing fluctuation frequency, and the 
responses appear phase-leading as compared with the 
forcing disturbance. For  the other parameters, i.e. 
C~l Re*, Crrj Re*, Crr2 Re*, Nut and Nuz, the increase 
in frequency results in a phase lag in responses, and 
the amplitudes decreased rather than increased, It is 
believed that they are indirectly influenced by the fluc- 
tuation and the fluid cannot  respond immediately 

to the torsional fluctuation o f  disk 2. Therefore, as 
presented in Fig. 10, the high frequency of  the forcing 
disturbance leads to the small amplitude of  the 
responses. 

Phase diagrams for  varyin 0 values o f  Reynolds 
number, For  the condit ion of  (B, 70, ~, co) = (0.1, - 1, 
0.1, n) and Re = 100, 600 and 1200, the phase dia- 
grams of  the velocity functions G vs F at two points 
adjacent to disks 1 (q ~ 0.08) and 2 (q ~ 0.91) are 
plotted in Fig, 11. The phase diagrams demonstrate 
the different behaviors o f  fluid flow near the two disks. 



Non-isothermal flow and heat transfer 1875 

- 2  

r~ 

- 0  

-10  

- 1 4  
9.0 

8.4 

7.8 

7.2 

6.6 

6 . 0  
-8.40 

- 8 , 48  

-8 .52  

Nu 
-8 .58 

-8 .84  

-3 .70  

re, :/e, ,~I it~i 

~\/i i\/~ " 

i i i i 1 1 i i 

C= 0.1 
- - -  ~=0.3 

F' . . . . . .  C=o.s 
: 

l Y  ~, ~ : ' ,  / ;  : 1 \  ', :1 ~ ~ I 

I ] . . . . . . . . . . . . . . . . . . . . . . . . . . .  i ] 

/ / "-.. .  

0 Mr 8~r t~'r 

~ T  

Fig. 9. Amplitudes effects on the flows at (Re, B, ~o, ~)  = 
(100, 0.2, - 1, n). 

Near disk 1, from the phase plots in Fig. 11 (a), it is 
observed that the phase trajectories spiral into a small 
closed path. Physically, it implies that the fluid motion 
near the constantly-rotating disk (disk 1) decays to 
an oscillation with a very small amplitude, and the 
amplitude reduces with increasing Re. The fluid near 
the fluctuating disk (disk 2) behaves in a more 
complicated way. As shown in Fig. 11 (b), the phase 
trajectory remains rather regular at a relatively low 
Reynolds number, R e  = 100. As the Reynolds num- 
ber increases to the higher values, e.g. R e  = 600 and 

1200, the phase trajectories first appear anomalous 
and, eventually, are attracted to a limit cycle in the 
phase plane. It means that the long-term behavior of 
the system with R e  <<, 1200 is still a periodic oscil- 
lation ; but, in the transient stage, the system behaves 
aperiodically. The phase plots also demonstrate that 
the increase in R e  results in an extension of the 
transient stage. 

CONCLUDING REMARKS 

An unsteady analysis for mixed convection between 
two rotating coaxial disks has been developed. It is 
believed that the present results are not only useful 
in exploring the unsteady transport phenomena in 
a coaxially rotating system, but are also useful in 
understanding the transient flow and heat transfer 
characteristics of other unsteady thermal systems. 
From the present results the following conclusions 
can be drawn : 

(1) For both asymptotic and torsionally oscillatory 
modes, the flow and heat transfer characteristics 
experience a transient stage. The system finally reaches 
a steady state for the asymptotic case, while turning to 
a fully-developed periodicity in the cases of oscillatory 
mode. The transient development depends strongly 
on the competition of the inertia effect of the system 
and the effects of the unsteadiness. 

(2) For the asymptotic mode, centrifugal buoyancy 
can only alter the steady-state solutions quanti- 
tatively ; however, the qualitative natures of the tran- 
sient flow, e.g. the growth and decay of the Ekman 
layer and the period of the transient stage, cannot 
be significantly affected by the centrifugal-buoyancy 
effect. 

(3) In the cases of the oscillatory disk, since the 
torsional oscillation of disk 2 is the source of the 
disturbance, the tangential friction factor on disk 2 
can respond to the forcing oscillation better than the 
radial friction factors and heat transfer rates; and it 
is also phase-leading in some of the cases. 

(4) The amplitudes of the flow and heat transfer 
parameters increase with the centrifugal buoyancy in 
the case of positive thermal Rossby number. The tran- 
sient stage in the oscillatory mode can be extended by 
the buoyancy effect. Moreover, the centrifugal buoy- 
ancy may cause a phase-shift in the responses. 

(5) As expected, the amplitudes of the responses 
increase with the increasing forcing amplitude, 
However, the high frequency of the oscillation can 
augment the amplitude of the tangential friction on 
the fluctuating disk but suppress the amplitudes of the 
responses of the other friction factors and heat trans- 
fer rates, since the flow can not follow the rapid alter- 
nation caused by the high-frequency fluctuation of the 
oscillatory disk. 

(6) For the oscillatory mode, the phase diagram 
analysis demonstrates that, at high Reynolds 
numbers, the fully-developed periodicity can be 



1876 C . Y .  S O O N G  and  H. L. M A  

q. 

w-I 

1.0  ! 
. . . . . .  ~a = 0.2x ~a = 2x  

/ 

0 . 5  ~ - - -  w = x . . . .  Qu~i--~stcady 

J 

| i~ i !  ! i  i ;  l! i~ 
1 i i  , t  i ,  t i l  l !  

; "l" ,-~ 

-1.o ~ ~ ~  \j/ , , ~  , ~ ,  ! 3,,. ~ ,~,- ~ ~,. 

-1.~li/ ~/ i! !/ !! ~i 

-2.0J 
:~.5 . . . . . . . . . . .  

, , , / " , ,  ; '~ ' ,  , / , ' ,  I ! ', , / 1 ' ,  

,.o 

: t t  :; ~ ,  ! l  ~ l  
' I ~ i  ~ :  ~ '  ~I ' , :  

- 0 . 5  
- 0 . 9 2  

-LO0- 

- 1 . 0 8  

N u  1 

- 1 . 1 6  

- 1 . 2 ~  

-1.~I 

: i  !! :~ :i  " 
!i , !  i ! !  

/ ! .  i l i  i 
',- k" , I" ..- , ;-., i 

"i ",-" ~-"~ ,~-" ~ "-"~ '~-" 

' I ' ' 1 ! 

! i  ~!  ~ i  ' "  ~ 

\! !/ ~] ~,/ ,,, 'd 

0 

- r .  

-I 

- 2  

:I 

, i/ 

i!/,~! i,/~ i,%, :n, :,!/~l i//~ 
~'/'¢~ ~V~ ii ', 

! /  ; :  
',j ,, ;./ 

/~, r, 

Nu2 ~ !i" /~ ~" !~ J i i ', !~ ,' !i 

":i i i ! !  
0.9 . . . . .  ', ~ ,, ,  , 

i i ' , , i , ;  :, i . . . . . .  : ", ." ',.i; 
"" i ' r  l , i T ' ' ' t l i 

L i  ' ' ~ i  , '  i i I ~ i  I ,  

f V ',/ ;: V . !./ ' ~i 

0.? . . . . . . . . . . . .  
41r B'n" 12~r 0 4~r 81T 1~ 

Fig. 10. Frequency  effects on  the flows at  ( R e ,  B ,  70, ~) = (100, 0.2, 0, - 0 . 1 ) .  



Non-isothermal flow and heat transfer 1877 

- 0 . 4 0 0 2  . . . .  t . . . .  t . . . .  

R e  = 1 0 0  

- 0 . 4 0 0 4  

- 0 . 4 0 0 8  

7) = 0.08 

-0 .4010  t I t I I I i I t I t , I i 

0 . 2 0 4 5  

G - 0 . 4 0 0 6  

- 0 . 8 9 2 [  Re'= 100 

-0.694 I 

-0.896 t 

- 0 . 8 9 8  t 

-0"901  I 

-0.902 
0 . 2 0 4 7  

I 

0.2049 0.2051 -0 .0960  -0 .0956  -0 .0956  - 0 . 0 9 5 4  

- 0 . 6 2 5 0  . . . .  I . . . .  -0 .660  

G - 0 . 6 2 5 5  

Re = 600 

-0 .662  

"r/ = 0.085 

I I I I I I I I 

0.1105 

-0 .664  

- 0 . 6 2 6 0  -0 .666  
0 . I t 0 0  0.1110 -0 .182  

l I I 

Re = 6 0 0  

~ = 0.916 

i I J i 
-0 .181 -0 .160  -0 .179  

- 0 . 6 5 4 7  

G - 0 . 6 5 5 2  

- 0 . 6 5 5 7  I 
0 . 0 5 3 5  

i i I , l 

Re = 1200 "0 =0.0626 

i l I i i i 

- 0 . 5 6 8 0 .  , , , , 

71 = 0.9133 

- 0 . 5 6 8 8  

- 0 . 5 6 9 6  

- 0 . 5 7 0 4 ~  

- 0 . 5 7 1 2 1  

0 . 0 5 3 9  0 . 0 5 4 3  - 0 . 1 4 1 7  - 0 . 1 4 0 1  - 0 . 1 3 8 5  

F F 

(a) (b) 
Fig. 11. Phase diagrams of  G vs F f o r  (B, 7o, ~, co) = (0.1, --1, 0.1, r 0 and Re = 100, 600 and 1200: 

(a) flow near disk 1 and (b) flow near disk 2. 



1878 C.Y. SOONG and H. L. MA 

delayed and  the behavior  of  the flow system becomes 
ra ther  anomalous  in the t ransient  stage. It may be 
regarded as a clue to flow approach ing  instabil i ty at  
the higher  Reynolds numbers .  The instabil i ty problem 
is beyond the scope of  the present  work, bu t  it is a 
worthwhile  invest igat ion in the future. 

REFERENCES 

1. C.Y. Soong, On centrifugal-buoyancy in non-isothermal 
rotating flows. In Developments in Theoretical and 
Applied Mechanics XVI (Edited by B. Antar et al.), 
I1.6.25-11.6.32. UTSI, Nashville, Tennessee (1992). 

2. C. Y. Soong and W. M. Yan, Numerical study of mixed 
convection heat transfer between two co-rotating sym- 
metrically-heated disks, AIAA J. Thermophys. Heat 
Transfer 7(1), 165-170 (1993). 

3. C. Y. Soong and W. M. Yan, Transport phenomena in 
non-isothermal flow between co-rotating asymmetric- 
ally-heated disks, Int. J. Heat Mass Transfer 37, 2221- 
2230 (1994). 

4. S. Rosenblat, Torsional oscillations of a plane in a vis- 
cous fluid, J. Fluid Mech. 6, 20f~220 (1959). 

5. D.J. Benny, The flow induced by a disk oscillation in its 
own plane, J. Fluid Mech. 18, 385-391 (1964). 

6. N. Riley, Oscillating viscous flows, Mathematika 12, 
161-175 (1965). 

7. E. R. Benton, On the flow due to a rotating disk, J. Fluid 
Mech. 24, 781 800 (1966). 

8. N. Riley, Thermally induced boundary-layer flows in 
a rotating environment, J. Fluid Mech. 29, 241-257 
(1967). 

9. R. J. Bodonyi and K. Stewartson, The unsteady laminar 
boundary layer on a rotating disk in a counter-rotating 
fluid, J. Fluid Mech. 79, 669~588 (1977). 

10. R. Purushothaman, Fluctuating flow due to a rotating 
disk, Phys. Fluids 21(12), 2148-2153 (1978). 

11. H. Shippers, Analytical and numerical results for the 
non-stationary rotating disk flow, J. Engng Math. 1(2), 
173-191 (1979). 

12. V. P. Sharma, Flow and heat transfer due to small tor- 
sional oscillation of a disk about constant mean, Acta 
Mechanica 32, 19-34 (1979). 

13. K. Stewartson, C. J. Simpson and R. J. Bodonyi, The 
unsteady laminar boundary layer on a rotating disk in a 
counter-rotating fluid--ll, J. Fluid Mech. 121, 507-515 
(1982). 

14. P. Singh, V. Radhakrishnan, and K. A. Narayan, Fluc- 
tuating flow due to unsteady rotation of a disk, A1AA J. 
27(2), 150-154 (1989). 

15. S. Rosenblat, Flow between torsionally oscillating disks, 
J. Fluid Mech. 6, 388-399 (1960). 

16. C. E. Pearson, Numerical solutions for the time-depen- 
dent viscous flow between two rotating coaxial disks, J. 
Fluid Mech. 21(4), 623~533 (1965). 

17. H. P. Greenspan and L. N. Howard, On a time-depen- 
dent motion of a rotating fluid, J. Fluid Mech. 17, 385- 
404 (1963). 

18. E. H. Wedemeyer, The unsteady flow within a spinning 
cylinder, J. Fluid Mech. 20(3), 383-399 (1964). 

19. H.-P. Pao, A numerical computation of a confined ro- 
tating flow, A S M E  J. Appl. Mech. 37, 480-487 (1970). 

20. H. L. Lugt and H. J. Haussling, Development of flow 
circulation in a rotating tank, Acta Mechanica 18, 255- 
272 (1973). 

21. M. Bertela and F. Gori, Laminar flow in a cylindrical 
container with a rotating cover, A S M E  J. Fluids Engng 
104, 31 39 (1982). 

22. B. G. Higgins, Film flow on a rotating disk, Phys. Fluids 
29(11), 3522-3529 (1986). 

23. T. J. Rehg and B. G. Higgins, The effects of inertial and 
interfacial shear on film flow on a rotating disk, Phys. 
Fluids 31(6), 1360-1371 (1988). 

24. S. Mochiziki, Unsteady flow phenomena and heat trans- 
fer in rotating-disk systems. In Transport Phenomena in 
Thermal Engineering (Edited by J. S. Lee, S. H. Chung 
and K. H. Kim), Vol. 2, pp. 1265 1275. Begell House, 
New York (1993). 

25. M. Itoh, Y. Yamada and K. Nishioka, Experimental 
study on flow transition due to rotating disk in an enclos- 
ure, J. J S M E  B 51]462, 452-460 (1985) [in Japanese]. 

26. G. M. Homsy and J. L. Hudson, Heat transfer in a 
rotating cylinder of fluid heated from above, Int. J. Heat 
Mass Transfer 14, 1149-1159 (1969). 

27. D. D. Gray and A. Giorgini, The validity of the Bous- 
sinesq approximation for liquid and gases, Int. J. Heat 
Mass Transfer 19, 545 551 (1976). 

28. J. A. D. Ackroyd, Stress work effects in laminar fiat- 
plate natural convection, J. Fluid Mech. 62, 677~95 
(1974). 

29. S. L. Lee, A new numerical formulation for parabolic 
differential equations under the condition of large 
time steps, Int. J. Heat Mass Transfer 26, 1541 1549 
(1988). 

30. K. E. Barrett, Numerical study of the flow between ro- 
tating coaxial disks, Z A M P  26, 807 816 (1975). 

31. C. Y. Soong, An assessment of finite difference methods 
in solution of singular perturbation problems, Paper pre- 
sented at the First National Conference on Com- 
putational Fluid Dynamics, AASRC, Chito, Taiwan 
(May 1992). 


